Multi-objective Optimization and Multimodal Prediction in the Design of Materials System

Ankit Agrawal and Alok Choudhary

Center for Ultra-Scale Computing and Information Security (CUCIS),
Department of Electrical Engineering and Computer Science,
Northwestern University
{ankitag,choudhar}@eecs.northwestern.edu

MURI Program Review
January 21, 2013
Outline

❖ Introduction

❖ Project Collaboration
 ❖ Multi-objective Structure-Property Optimization
 ❖ Multimodal Prediction of Localization Relationships
 ❖ Exploring Composition-Processing-Property Linkages in NIMS Steel Database

❖ Summary & Future Work
“Data Mining”
 – the act of extracting information from data and transform it into understandable structures.

“Scalability”
 – the ability of a system to handle a growing amount of work in a capable manner.

... coupled with materials science/informatics
 – Describe process-structure-property-performance relationships
 – Extract microstructure features
 – Predict properties
 – Materials design
Introduction (cont.)

What we do
– make use of computational techniques to solve data problems
– parallelization

Problems we study
– classification, regression, clustering
– dimension reduction
– optimization

Collaborators

- Multi-Scale Structural Simulations Laboratory
- Materials Informatics for Engineering Design
- TATA Consultancy Services
PSPP Linkages

Goal/means

Processing

Structure

Properties

Performance

Cause and effect

Project Collaboration

Project 1. Multi-objective Structure-Property Optimization
Project Collaboration

Project I. Multi-objective Structure-Property Optimization

Project II. Multimodal Prediction of Localization Relationships

Project Collaboration

Project I. Multi-objective Structure-Property Optimization

Project II. Multimodal Prediction of Localization Relationships

Project III. Exploring Composition-Processing-Property Relationships

Project I. Multi-Objective Optimization of Structure-Property Relationships

Motivation is to explore the structure–property relationships in polycrystals.

Collaboration is achieved by incorporating data mining in computer science and structural simulation in materials.

Objective is to obtain structures with desired optimized property.

Microstructure

Property

Microstructure Data

Property Data

Multi-Scale Structural Simulations Laboratory

Center of Ultra-Scale Computing and Information Security

Computational data mining models
Project I. Multi-objective Structure-Property Optimization

Problem

How can one identify the microstructure, or set of microstructures, that yield a desired property?

How about a number of desired properties?

Structure Representation

Crystal orientations in the form of an orientation distribution function (ODF), discretized using a finite element approximation in Rodrigues space.

Property Representation

Linear/nonlinear functions
Structure Representation

Volume Fraction Representation

Mathematical representation of all possible ODFs using FE degrees of freedom.

Three constraints define the space of first order microstructural feature (ODF):

- Normalization, $q^T A = 1$
- Lower bound, $A \geq 0$
- Crystallographic Symmetry, $r' = G r$
Property Representation

Property Representation

Magnetism (M), Yield strength (Y), Young’s Modulus (E),

- Magnetism (M): linear
- Yield strength (Y): linear
- Young’s Modulus (E): nonlinear

And their combinations: Y*M/E, Y/T_cr (Critical Temperature for buckling)

- Y*M/E: nonlinear
- Y/T_cr: nonlinear

Objectives

- Given the function/data, optimize the desired property.
- Inversely, retrieve textures with desired properties.

Solution

- Global optimization
- Data mining
Global Optimization

A global optimization problem

\[
\begin{align*}
\text{maximize } & \quad F(X) \\
X & = \{x_1, x_2, \ldots, x_D\} \subseteq \mathbb{R}^D \\
\text{subject to } & \quad \alpha^T X = 1, \quad X \geq 0
\end{align*}
\]

Traditional Method (infeasible)

- Exhaustive search

Optimization Methods

- Linear programming
- Genetic algorithms
- Simulated annealing
Global Optimization (cont.)

Linear Programming (LP)

LP is used to efficiently solve an optimization problem with a linear objective function, subject to linear equality and linear inequality constraints.

Genetic Algorithm (GA)

GA searches for useful solutions to optimization using a heuristic that mimics the process of natural evolution, with operators as crossover and mutation.

Why we need data mining?

High dimension! High dimension! High dimension!
Structure-Property Optimization with Data Mining: Flowchart

Microstructure Representation
- Features that mathematically or statistically describe microstructures

Traditional Method

Database Construction
- Randomly generated microstructure-property pairs with most desired and most undesired objectives

Feature Selection
- Select a small set of “critical” microstructure features

Global Optimization
- Find the value of microstructure that leads to the extremal properties

Data Mining Method
Structure-Property Optimization with Data Mining

Database Construction

• Randomly generate data instances under constraints.
• Keep the most desired class and the most opposing class.

Feature Selection:

Data mining helps reduce the searching space.

• Search only valuable variables (76 \rightarrow 10?)
• Search only valuable regions ($odf3 \in [0, 122] \rightarrow [100, 122]$?)

Feature Selection Methods

• Information gain
• Chi-square
• Correlation
• SVM
Feature Selection Results for Combination Problem 1

Problem
Maximize $Y*M/E$.

Feature Rankings

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Chi-square</th>
<th>Info Gain</th>
<th>SVM</th>
<th>Ensemble</th>
</tr>
</thead>
<tbody>
<tr>
<td>odf2</td>
<td>odf3</td>
<td>odf3</td>
<td>odf3</td>
<td>odf3</td>
</tr>
<tr>
<td>odf3</td>
<td>odf2</td>
<td>odf2</td>
<td>odf2</td>
<td>odf2</td>
</tr>
<tr>
<td>odf16</td>
<td>odf65</td>
<td>odf65</td>
<td>odf75</td>
<td>odf65</td>
</tr>
<tr>
<td>odf30</td>
<td>odf66</td>
<td>odf66</td>
<td>odf75</td>
<td>odf66</td>
</tr>
<tr>
<td>odf32</td>
<td>odf64</td>
<td>odf66</td>
<td>odf73</td>
<td>odf64</td>
</tr>
<tr>
<td>odf57</td>
<td>odf70</td>
<td>odf70</td>
<td>odf73</td>
<td>odf65</td>
</tr>
<tr>
<td>odf60</td>
<td>odf72</td>
<td>odf72</td>
<td>odf72</td>
<td>odf70</td>
</tr>
<tr>
<td>odf64</td>
<td>odf30</td>
<td>odf30</td>
<td>odf70</td>
<td>odf70</td>
</tr>
<tr>
<td>odf65</td>
<td>odf10</td>
<td>odf10</td>
<td>odf16</td>
<td>odf64</td>
</tr>
<tr>
<td>odf66</td>
<td>odf24</td>
<td>odf24</td>
<td>odf16</td>
<td>odf66</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Structure-Property Optimization:
Optimum Found & Time Saved

Experiment Result: Solution found/Performance vs. Number of Variables

Optimum Solution

Time Consumption (s)

Number of Variables

Optimum found
Time Consumed
Project II: Multimodal Prediction of Structure–Response Localization

Problem: Given a microstructure, predict the spatial distribution of the response at the microscale.

Solution:
- Divide into multiple training groups based on volume fraction
- Extract neighborhood information at voxel scale
- Construct additional features from neighbor input
- Key feature selection
- Generate regresional response output

This is a collaborative work between Surya’s group at Georgia Institute of Technology and CUCIS group at Northwestern
Project II. Multimodal Prediction of Structure–Response Localization

Problem

How can one model the microstructure-response relationship and predict the response at microscale?

The responses within a cube is constrained.

Data

- A large number of 21x21x21 3D cubes of a two-phase composite material
- Corresponding 3D cubes of its strain fields response
- Contrast ratio 10: 2500 cubes
- Contrast ratio 50: 2500 cubes
Steps for Structure–Response Prediction

Step 1: Divide training cubes into groups
- Cubes within a group have higher similarity
- Use volume fraction as the criterion

Step 2: Neighbor information extraction
- Enumerate neighbor voxels up to the 12th level
- Add novel composite features
- Supervised feature selection process to identify key features

Step 3: Response prediction with regression analysis
- Build regression tree with highly influencing features
- Model ensemble to achieve greater accuracy
Feature Selection Flowchart

Define an original (large) set of neighbor features.

Direct neighbors

Feature Selection

Obtain a ranking of the features and determine a final (small) set.

Composite features
Direct Neighbor Extraction

Extract the neighbors’ information

• Neighbors are distinguished by center-to-center distance.

• A voxel in a 3D cube has
 - 1st neighbors – 6
 - 2nd neighbors – 12
 - 3rd neighbors – 8
 - 4th neighbors – 6
 - 5th neighbors – 24
 - 6th neighbors – 24
 - 7th neighbors – 12
 - ...

Extra Composite Feature Creation

• Besides direct neighbor voxel inclusions, extra features are created and added
 • by aggregating sets of neighbor voxels to form composite features

• Composite features
 ▪ Weighted 0/1 neighbors – (2)
 ▪ Sum of (1/distance) of all 0/1 neighbors
 ▪ Number of 0s/1s in a certain level – (12)
 ▪ Number of 0s/1s up a certain level – (12)
 ▪ Encoded level 1/2/3/4 neighbors – (4)
 ▪ Consider neighbors’ physical placements by converting it into a binary-coded decimal
Feature Selection Results

Feature Rankings

<table>
<thead>
<tr>
<th>Rank</th>
<th>Feature</th>
<th>Rank</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Self</td>
<td>17</td>
<td>Weighted_0_nbrs</td>
</tr>
<tr>
<td>2</td>
<td>Nbr1.2</td>
<td>18</td>
<td>Num.1s.sofar.nbr1</td>
</tr>
<tr>
<td>3</td>
<td>Nbr1.3</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>Nbr1.1</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>Nbr1.0</td>
<td>24</td>
<td>Num.0s.sofar.nbr1</td>
</tr>
<tr>
<td>6</td>
<td>Nbr1.4</td>
<td>25</td>
<td>Nbr2.6</td>
</tr>
<tr>
<td>7</td>
<td>Nbr1.5</td>
<td>26</td>
<td>Nbr5.6</td>
</tr>
<tr>
<td>8</td>
<td>Nbr2.2</td>
<td>27</td>
<td>Nbr5.10</td>
</tr>
<tr>
<td>9</td>
<td>Nbr2.3</td>
<td>28</td>
<td>Nbr2.9</td>
</tr>
<tr>
<td>10</td>
<td>Nbr2.0</td>
<td>29</td>
<td>Nbr8.28</td>
</tr>
<tr>
<td>11</td>
<td>Nbr2.1</td>
<td>30</td>
<td>Nbr5.11</td>
</tr>
<tr>
<td>12</td>
<td>Nbr4.4</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>13</td>
<td>Nbr2.4</td>
<td>82</td>
<td>Weighted_1_nbrs</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>83</td>
<td>Encode.nbr1</td>
</tr>
</tbody>
</table>

...
Validation of Feature Selection

For comparison purpose, we run experiments on a small portion of the data (4 training, 1 testing) with contrast ratio 10, with various features.

<table>
<thead>
<tr>
<th>Features used</th>
<th>Number of features</th>
<th>Error rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1: Neighboring information up to the 12th level</td>
<td>233</td>
<td>0.101</td>
</tr>
<tr>
<td>F2: Neighboring information up to the 5th level</td>
<td>69</td>
<td>0.1006</td>
</tr>
<tr>
<td>Selected feature out of F1</td>
<td>69</td>
<td>0.0962</td>
</tr>
</tbody>
</table>
Prediction Results

Data Split
Contrast 10: no predefined train/test split. We use 4 varieties.
Contrast 50: out of 2500, 2000 are held for training, and 500 for testing.

Prediction Results

<table>
<thead>
<tr>
<th>Contrast 10 Models</th>
<th>MASE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500/500 split</td>
<td>3.74</td>
</tr>
<tr>
<td>500/2000 split</td>
<td>5.86</td>
</tr>
<tr>
<td>1000/1000 split</td>
<td>3.25</td>
</tr>
<tr>
<td>1000/1500 split</td>
<td>4.22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contrast 50 Models</th>
<th>MASE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression tree only</td>
<td>13.67</td>
</tr>
<tr>
<td>Regression tree with feature selection</td>
<td>11.86</td>
</tr>
</tbody>
</table>

\[
MASE = \frac{1}{N} \sum_{N} \left| \frac{y - \hat{y}}{y_{imposed}} \right| \times 100\%
\]
Objective: Employ data-driven approaches to the NIMS public domain materials database for exploring composition-processing-property relationships and constructing predictive models for fatigue strength of steels.
NIMS Database Attributes

Fatigue Data Sheet Information:

Chemical composition - %C, %Si, %Mn, %P, %S, %Ni, %Cr, Cu %, Mo% (all in wt. %)

Upstream processing details - Ingot size, Reduction ratio, Non-metallic inclusions

Heat treatment conditions – Temperature, Time and other process conditions for Normalizing, Carburizing-Quenching and Tempering processes

Mechanical properties - YS, UTS, %EL (Elongation), %RA (Reduction in Area), Vickers Hardness, Charpy impact value (J/cm²), Rotating bending fatigue strength @ 10^7 cycles

Total - 437 data records
Carbon and low alloy steels - 371 observations,
Carburizing steels - 48 observations and Spring steels - 18 observations

Steel Fatigue Strength Prediction Framework

Preprocessing → Feature Selection → Predictive modeling → Evaluation

Rotating Bending Fatigue Testing Data from NIMS

Preprocessed Data

Fatigue Strength Prediction Database

Training Split

Leave One Out Cross Validation (LOOCV)
Cluster Visualization

kmeans clustering

- Cluster 1
- Cluster 2
- Cluster 3
- Centroids
Information Gain Based Feature Ranking

Relative Attribute Importance

- TT
- NT
- Cr
- THCr
- C
- CTH
- T
- TCr
- DT
- D
- Qt
- C
- Ch
- T
- Th
- Mo
- N
- Mn
- RedRatio
- dA
- Si
- dC
- Cu
- S
- dB
- P
Evaluation Metrics

- Compare vectors of actual and predicted values
 - Coefficient of correlation (R)
 - Coefficient of determination (R^2)
 - Mean Absolute Error (MAE)
 - Root Mean Squared Error (RMSE)
 - Standard Deviation of Error (SDE)
 - Mean Absolute Error Fraction (MAE)
 - Root Mean Squared Error Fraction (RMSE)
 - Standard Deviation of Error Fraction (SDE)

\[R = \frac{\sum_{i=1}^{N} (y_i - \bar{y})(\hat{y}_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (y_i - \bar{y})^2 \sum_{i=1}^{N} (\hat{y}_i - \bar{y})^2}} \]
\[MAE = \bar{e} = \frac{1}{N} \sum_N |y - \hat{y}| \]
\[RMSE = \sqrt{\frac{1}{N} \sum_N (y - \hat{y})^2} \]
\[SDE = \sqrt{\frac{1}{N} \sum_N (|y - \hat{y}| - \bar{e})^2} \]
\[MAE_f = \bar{e}_f = \frac{1}{N} \sum_N \left| \frac{y - \hat{y}}{y} \right| \]
\[RMSE_f = \sqrt{\frac{1}{N} \sum_N \left(\frac{y - \hat{y}}{y} \right)^2} \]
\[SDE_f = \sqrt{\frac{1}{N} \sum_N \left(\left| \frac{y - \hat{y}}{y} \right| - \bar{e}_f \right)^2} \]
Results Comparison

![Bar chart showing comparison of performance metrics for different models.](chart.png)
Results Comparison

<table>
<thead>
<tr>
<th>Method</th>
<th>R</th>
<th>R^2</th>
<th>MAE</th>
<th>RMSE</th>
<th>SDE</th>
<th>MAE_f</th>
<th>$RMSE_f$</th>
<th>SDE_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>DecisionTable</td>
<td>0.9494</td>
<td>0.9014</td>
<td>34.8762</td>
<td>58.5932</td>
<td>47.1371</td>
<td>0.0584</td>
<td>0.0806</td>
<td>0.0557</td>
</tr>
<tr>
<td>IBk</td>
<td>0.9589</td>
<td>0.9195</td>
<td>46.0320</td>
<td>53.2749</td>
<td>26.8499</td>
<td>0.0859</td>
<td>0.0940</td>
<td>0.0382</td>
</tr>
<tr>
<td>KStar</td>
<td>0.9702</td>
<td>0.9413</td>
<td>36.9986</td>
<td>45.3779</td>
<td>26.3029</td>
<td>0.0706</td>
<td>0.0857</td>
<td>0.0487</td>
</tr>
<tr>
<td>SVM</td>
<td>0.9795</td>
<td>0.9594</td>
<td>24.2820</td>
<td>37.6250</td>
<td>28.7736</td>
<td>0.0400</td>
<td>0.0530</td>
<td>0.0349</td>
</tr>
<tr>
<td>LRTtrans</td>
<td>0.9796</td>
<td>0.9596</td>
<td>22.3336</td>
<td>37.4748</td>
<td>30.1272</td>
<td>0.0370</td>
<td>0.0514</td>
<td>0.0357</td>
</tr>
<tr>
<td>RobustFitLSR</td>
<td>0.9804</td>
<td>0.9612</td>
<td>22.2152</td>
<td>37.2188</td>
<td>29.8960</td>
<td>0.0369</td>
<td>0.0520</td>
<td>0.0366</td>
</tr>
<tr>
<td>LinearRegression</td>
<td>0.9815</td>
<td>0.9633</td>
<td>25.6006</td>
<td>35.7168</td>
<td>24.9345</td>
<td>0.0456</td>
<td>0.0581</td>
<td>0.0360</td>
</tr>
<tr>
<td>PaceRegression</td>
<td>0.9816</td>
<td>0.9635</td>
<td>25.0302</td>
<td>35.5733</td>
<td>25.3065</td>
<td>0.0439</td>
<td>0.0565</td>
<td>0.0356</td>
</tr>
<tr>
<td>ANN</td>
<td>0.9861</td>
<td>0.9724</td>
<td>19.7778</td>
<td>31.0545</td>
<td>23.9695</td>
<td>0.0343</td>
<td>0.0470</td>
<td>0.0322</td>
</tr>
<tr>
<td>REPTree</td>
<td>0.9862</td>
<td>0.9726</td>
<td>22.5671</td>
<td>30.9401</td>
<td>21.1907</td>
<td>0.0414</td>
<td>0.0542</td>
<td>0.0349</td>
</tr>
<tr>
<td>M5ModelTree</td>
<td>0.9890</td>
<td>0.9781</td>
<td>19.3760</td>
<td>27.6065</td>
<td>19.6870</td>
<td>0.0353</td>
<td>0.0484</td>
<td>0.0332</td>
</tr>
<tr>
<td>MPR</td>
<td>0.9900</td>
<td>0.9801</td>
<td>18.5529</td>
<td>26.4378</td>
<td>18.8563</td>
<td>0.0350</td>
<td>0.0556</td>
<td>0.0432</td>
</tr>
</tbody>
</table>
I. Structure-property optimization
 – Global optimization methods are used to solve the problem.
 – Dimension reduction speeds up the search dramatically.
 – It is able to discover answers that would be otherwise difficult to find.

II. Microstructure-response modeling
 – Feature selection is able to discover valuable localized information.
 – A classification ensemble based meta model is able to approximate the FEM process precisely.

III. Steel Fatigue Strength Prediction
 – Neural networks, decision trees, multivariate polynomial regression able to achieve high R^2 values of >0.97.
Future Work

• A generalized data mining tool for global optimization
 – Random data generation subject to constraints
 – Searching space reduction
 – Starting point selection

• A multi-scale structure-response modeling
 – Macro-scale: consider the geometry of 0/1 placement within a cube
 – Micro-scale: constrained regression within a cube

• Enhanced prediction of mechanical properties in steels
 – Ensemble predictive modeling
 – Hierarchical predictive modeling
 – Predict other properties like %Elongation

Thank you!